Simplicial Nerve, S and Cat_{∞}

Jingyuan Zhu

Université Paris-Saclay

February 5, 2024

1 Preliminary

Note that we have monoidal functors

 $c \colon \mathsf{Set} \to \mathsf{sSet},$ $\pi_0: \mathsf{sSet} \to \mathsf{Set},$ $\operatorname{ev}_0 \colon \mathsf{sSet} \to \mathsf{Set},$

where c is the constant functor, ev_0 is the functor given by $sSet \ni X \mapsto X_0$. We also remark that we have adjoint relations

 $\pi_0 \dashv c \dashv \operatorname{ev}_0$.

Denoting

$$\begin{split} c &= c_* \colon \mathsf{Cat} \to \mathsf{Cat}_\Delta, \\ \pi &= (\pi_0)_* \colon \mathsf{Cat}_\Delta \to \mathsf{Cat}, \\ u &= (\mathrm{ev}_0)_* \colon \mathsf{Cat}_\Delta \to \mathsf{Cat}, \end{split}$$

we then obtain adjoint relations

 $\pi \dashv c \dashv u.$

$\mathbf{2}$ Simplicial Nerve

In this section we define the so-called simplicial nerve (also named homotopycoherent nerve), denoted by N: $Cat_{\Delta} \rightarrow sSet$.

Beforehand, recall a lemma as follows.

Lemma 1. Suppose that C and D are locally small categories, and that Dadmitting all small limits. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Define $F^*: \mathcal{D} \to \mathsf{Set}^{\mathcal{C}^{\mathrm{op}}}$, which assigns each object $d \in \mathcal{D}$ the presheaf

 $\operatorname{Hom}_{\mathcal{D}}(F(-),d).$

Denote by $\mathcal{L}: \mathcal{C} \to \mathsf{Set}^{\mathcal{C}^{\mathsf{op}}}$ the Yoneda embedding. Denote by $F_1: \mathsf{Set}^{\mathcal{C}^{\mathsf{op}}} \to \mathcal{D}$ the left Kan extension of F along \mathcal{L} . Then, we have adjoint pairs $F_1 \dashv F^*$. In particular, F_1 preserves colimits. We give some examples.

Example 1. Let $\mathcal{C} = \Delta$, $\mathcal{D} = \mathsf{Cat}$, and $F: \Delta \hookrightarrow \mathsf{Cat}$ the fully faithful functor that embeds Δ as a full subcategory of Cat .

Then $F^* = N$ the ordinary nerve functor, $F_! = h$ the homotopy functor.

Example 2. Again let $\mathcal{C} = \Delta$, $\mathcal{D} = \mathsf{Top}$, and $F: \Delta \to \mathsf{Top}$ sending each object $[n] \in \Delta$ to the geometric *n*-simplex $|\Delta^n|$.

Then $F^* = \text{Sing}$ the singular complex functor, $F_! = |\cdot|$ the geometrical realisation.

Now, we would like to define the so-called simplicial nerve functor N: $Cat_{\Delta} \rightarrow sSet$. To do so, we first construct a functor $\Delta \rightarrow Cat_{\Delta}$, which serves as F in Lemma 1, and then we define N to be F^* . Besides, the biproduct $F_!$ is denoted $\mathfrak{C}: sSet \rightarrow Cat_{\Delta}$, which is called the Joyal rigidification functor.

2.1 Construction of the functor $\Delta \rightarrow \mathsf{Cat}_{\Delta}$

Denote by Lin.or.Set the category of finite linearly ordered sets and orderpreserving morphisms.

We are about to define a functor (by some abuse of notation) \mathfrak{C} : Lin.or.Set \rightarrow Cat $_{\Delta}$, then restrict it to the subcategory Δ of Lin.or.Set, so as to obtain the desired functor $F = \mathfrak{C} \colon \Delta \rightarrow \mathsf{Cat}_{\Delta}$.

To do so, we first do some preparatory work.

For any object $J \in \text{Lin.or.Set}$, and any element i, j in J such that $i \leq j$, define

$$P_{i,j} := \{ I \subset [i,j] \subset J \mid i,j \in I \}.$$

We order $P_{i,j}$ by using the inclusion relation \subset , then $P_{i,j}$ can be viewed canonically as a category.

Sometimes we also use the notation $P_{i,j}^J$ for $P_{i,j}$ if we desire to emphasize the whole set J.

Now, for each $J \in \text{Lin.or.Set}$, we assign a simplicially enriched category $\mathfrak{C}[\Delta^J]$, whose object-set is exactly J, and whose hom-sets are given by

$$\operatorname{Hom}_{\mathfrak{C}[\Delta^J]}(i,j) \coloneqq \begin{cases} \operatorname{N}(P_{i,j}), & \text{if } i \leq j; \\ \varnothing, & \text{otherwise} \end{cases}$$

where $i, j \in J$.

Note that for $i \leq j \leq k$, we have a map $P_{j,k} \times P_{i,j} \to P_{i,k}$ which sends (I', I) to $I \cup I'$. By taking the nerve functor, we obtain a map

$$\operatorname{Hom}_{\mathfrak{C}[\Delta^J]}(j,k) \times \operatorname{Hom}_{\mathfrak{C}[\Delta^J]}(i,j) \to \operatorname{Hom}_{\mathfrak{C}[\Delta^J]}(i,k),$$

which we define as the composition map in $\mathfrak{C}[\Delta^J]$.

One can check that in this way we indeed defined a simplicially enriched category $\mathfrak{C}[\Delta^J]$.

We are now in position to define the functor $\mathfrak{CLin.or.Set} \to \mathsf{Cat}_{\Delta}$.

Indeed, at the level of objects, we assign to each $J \in \text{Lin.or.Set}$ the simplicially enriched category $\mathfrak{C}[\Delta^J]$.

At the level of morphism, to each order-preserving map $f: J \to J'$, we define a map $P_{i,j}^J \to P_{f(i),f(j)}^{J'}$, given by $P_{i,j}^J \ni I \mapsto f(I) \in P_{f(i),f(j)}^{J'}$. Therefore, after taking the nerve functor, we obtain a morphism between simplicial sets

$$f_* \colon \operatorname{Hom}_{\mathfrak{C}[\Delta^J]}(i,j) \to \operatorname{Hom}_{\mathfrak{C}[\Delta^{J'}]}(f(i),f(j)).$$

We now define $\mathfrak{C}(f)$ to be f_* .

It can be checked that $\mathfrak C$ defined in this way is indeed a functor.

2.2 N and \mathfrak{C}

Letting F be the restriction of \mathfrak{C} to Δ , and using Lemma 1, we obtain adjoint functors $N = F^* \colon \mathsf{Cat}_\Delta \to \mathsf{sSet}$ and $\mathfrak{C} = F_! \colon \mathsf{sSet} \to \mathsf{Cat}_\Delta$. We also note that $\mathfrak{C} \colon \mathsf{sSet} \to \mathsf{Cat}_\Delta$ preserves all colimits.

2.3 Explore $\mathfrak{C}[\Delta^n]$ (and Dwyer–Kan–Bergner model structure)

In this subsection we explore the simplicially enriched category $\mathfrak{C}[\Delta^n]$.

Note that for any $J \in \text{Lin.or.Set}$, one can always find an isomorphism $J \cong [n]$. Thus $\mathfrak{C}[\Delta^J] \cong \mathfrak{C}[\Delta^n]$.

First of all, the objects of $\mathfrak{C}[\Delta^n]$ are exactly elements of $[n] = \{0 < 1 < \cdots < n\}$.

Next, for any $i \leq j$, we need to study the category (or ordered set) $P_{i,j}$. If i = j, clearly $P_{i,j}$ consists of a single element.

Now suppose i < j. Consider a bijection $P_{i,j} \to [1]^{j-i-1}$ such that

$$P_{i,j} \ni I \mapsto (\chi_{i+1 \in I}, \cdots, \chi_{j-1 \in I}),$$

where for i < k < j,

$$\chi_{k\in I} \coloneqq \begin{cases} 0, & \text{if } k \notin I; \\ 1, & \text{if } k \in I. \end{cases}$$

Thus, we see that, for i < j, $N(P_{i,j}) \cong (\Delta^1)^{j-i-1}$; and $N(P_{i,i}) \cong \Delta^0$. As a corollary, it can be checked easily that

Corollary 1. There exists a canonical isomorphism $\pi(\mathfrak{C}[\Delta^n]) \cong [n]$ which is identity on objects.

Here, let us add some remarks.

Indeed, the category Cat_{Δ} can be given a standard model category structure, which is called the Dwyer–Kan–Bergner structure.

To be explicit, we can define the weak equivalence on Cat_{Δ} as simplicially enriched functors $F: \mathcal{C} \to \mathcal{D}$ between arbitrary simplicially enriched categories \mathcal{C} and \mathcal{D} such that

- on the level of morphisms, the map F: Hom_C(x, y) → Hom_D(F(x), F(y)) is a weak equivalence with respect to the standard model category structure on sSet, that is, it is a weak equivalence after applying geometrical realisation;
- the induced map $\pi(\mathcal{C}) \to \pi(\mathcal{D})$ is essentially surjective.

The weak equivalence defined above is also known as Dwyer–Kan equivalence.

By the way, we define the notion of fibration on Cat_{Δ} , which is actually of no significance in our situation.

The fibrations on Cat_{Δ} is given by $F: \mathcal{C} \to \mathcal{D}$ such that

- on the level of morphisms, the map $F: \operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$ is fibration with respect to the standard model category structure on sSet, that is, it is a Kan fibration;
- the induced map $\pi(\mathcal{C}) \to \pi(\mathcal{D})$ is an isofibration.

Remark 1. We see immediately that the fibrant objects for the Dwyer–Kan– Bergner model are exactly those Kan-enriched categories.

Remark 2. Denote by \mathcal{H} the homotopy category of sSet (or equivalently, that of Kan). We observe that \mathcal{H} is a monoidal category. Also, note that $\pi: \mathsf{Cat}_{\Delta} \to \mathsf{Cat}$ lifts to $\pi: \mathsf{Cat}_{\Delta} \to \mathsf{Cat}_{\mathcal{H}}$ (the latter the category of \mathcal{H} -enriched categories). Then, we see that the definition of Dwyer–Kan equivalence is the same as \mathcal{H} -enriched equivalence.

Remark 3. One can show that, the homotopy functor $h: \mathsf{sSet} \to \mathsf{Cat}$ (i.e. the left adjoint of the nerve functor N: $\mathsf{Cat} \to \mathsf{sSet}$) coincides with the composition $\pi \circ \mathfrak{C}$. Thus, according to the previous remark, h can be lifted to $h: \mathsf{sSet} \to \mathsf{Cat}_{\mathcal{H}}$.

As a sequel to Corollary 1, we can show immediately that

Corollary 2. The map $\mathfrak{C}[\Delta^n] \to c([n])$ adjoint to the isomorphism $\pi(\mathfrak{C}[\Delta^n]) \to [n]$ given in Corollary 1 is a weak equivalence that is identity on objects.

We also point out the following theorem:

Theorem 1. Suppose sSet is endowed with the Joyal model structure, then the adjoint pair $\mathfrak{C} \dashv N$ gives a Quillen equivalence between sSet and Cat_{Δ}.

Remark 4. The theorem above indeed alludes to the fact that $\mathsf{Cat}_{\mathsf{sSet}}$ served as another model for ∞ -categories other than sSet (or quasi-categories). As a reminder, there are indeed a number of classical ∞ -categories constructed in this way: for example, the ∞ -category of spaces S, the ∞ -category of ∞ -categories Cat_{∞} , derived ∞ -category $\mathcal{D}_{\mathcal{A}}$ for abelian category \mathcal{A} , etc; of which we shall introduce the former two later.

However, one must have noted that this model is not that good, and people generally like to work with quasi-categories. For the reason, one could check this thread on overflow.

2.4 Explore $N(\mathcal{C})$

In this subsection we briefly study the simplicial set $N(\mathcal{C})$, where \mathcal{C} is an arbitrary simplicially enriched category.

Note that $\mathfrak{C}[\Delta^0] = c([0])$, and that $\mathfrak{C}[\Delta^1] = c([1])$. We see that

$$N(\mathcal{C})_{0} := \operatorname{Hom}_{\mathsf{Cat}_{\Delta}}(\mathfrak{C}[\Delta^{0}], \mathcal{C})$$
$$= \operatorname{Hom}_{\mathsf{Cat}_{\Delta}}(c([0]), \mathcal{C})$$
$$\cong \operatorname{Hom}_{\mathsf{sSet}}([0], u\mathcal{C}),$$

and similarly

$$N(\mathcal{C})_1 \cong Hom_{\mathsf{sSet}}([1], u\mathcal{C}).$$

Therefore, the objects of $N(\mathcal{C})$ are given by objects of \mathcal{C} , and the morphisms of $N(\mathcal{C})$ are given by the 1-morphisms of \mathcal{C} , that is, the objects of the hom-sets of \mathcal{C} .

We could also explore $N(\mathcal{C})_2$. We omit the procedure (which is, however, worth of carrying out), and give the conclusion: the 2-simplices of $N(\mathcal{C})$ are given by natural transformations $g \circ f \Rightarrow h$, where we have morphisms $x \xrightarrow{f} y$, $y \xrightarrow{g} z$, and $x \xrightarrow{h} z$, and its edges are g, f and $g \circ f$ respectively.

3 S and Cat_{∞}

As a corollary to Theorem 1, we see that for any Kan-enriched category \mathcal{C} , $\mathcal{N}(\mathcal{C})$ is an ∞ -category. We also note that this is a proposition that can be proved directly. Besides, for any $\mathcal{C} \in \mathsf{Cat}_{\Delta}$, using Corollary 2, we can show that $\mathcal{N}(\mathcal{C})$ must be a composer. That is, any map $Sp^n \to \mathcal{N}(\mathcal{C})$ from the *n*-spine Sp^n to $\mathcal{N}(\mathcal{C})$ can be lifted to a map $\Delta^n \to \mathcal{N}(\mathcal{C})$.

Now, consider the category Kan of (small) Kan complexes. This category is Kan-enriched, whose Hom-set from \mathcal{C} to \mathcal{D} is given by the Kan complex Fun $(\mathcal{C}, \mathcal{D})$, where \mathcal{C}, \mathcal{D} are Kan complexes. We then define the ∞ -catgeory of spaces S := N(Kan).

Remark 5. The ∞ -category S is really important: it serves as the role "base space" in the setting of ∞ -categories, as the category Set in ordinary category theory. For example, one can define the ∞ -presheaf over an ∞ -category C as the ∞ -category Fun(C^{op} , S).

Remark 6. As is well-known, to each model category, one may, through localisation, associate a corresponding ∞ -category. If one carries this procedure to sSet with the standard model structure, then one obtain the ∞ -category S. Indeed, one has a more general theorem due to Dwyer–Kan:

Theorem 2 (Dwyer–Kan). Let C be a simplicial model category. Then the full subcategory of cofibrant-fibrant objects Cat_{cf} is a Kan-enriched category. Furthermore, one has an equivalence between ∞ -categories:

$$L\mathcal{C} \simeq \mathrm{N}(\mathcal{C}_{\mathrm{cf}}),$$

where LC denotes the localisation of C.

We then consider another example. Denote by QCat the Kan-enriched category of (small) ∞ -categories. Its objects are (small) ∞ -categories, and its Hom-set from ∞ -category C to D is given by the maximal sub- ∞ -groupoid of Fun(C, D). We then define the ∞ -category of ∞ -categories $Cat_{\infty} := N(QCat)$.

Remark 7. Warning! One may think one can apply Theorem 2 to sSet with Joyal model struture. This is, however, not legistimate, as in this case sSet is not a simplical model category. However, if one consider the simplicial model category $sSet^+$ of marked simplicial sets, then Theorem 2 can apply and it turns out that the result is Cat_{∞} . Still, it is alluring to ask whether sSet with Joyal model struture localises to give Cat_{∞} .

Remark 8. One may ask why we take "maximal sub- ∞ -groupoid" here. As far as the author knows, this is a matter of covenience. If we do not do so, we will then obtain the so-called (∞ , 2)-category of (∞ , 1)-categories. See the third section of [1].

References

 nLab authors. model structure for Cartesian fibrations. https://ncatlab. org/nlab/show/model+structure+for+Cartesian+fibrations, March 2024. Revision 28.