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1 Preliminary
Note that we have monoidal functors

c : Set → sSet,
π0 : sSet → Set,

ev0 : sSet → Set,

where c is the constant functor, ev0 is the functor given by sSet 3 X 7→ X0.
We also remark that we have adjoint relations

π0 a c a ev0 .

Denoting

c = c∗ : Cat → Cat∆,
π = (π0)∗ : Cat∆ → Cat,
u = (ev0)∗ : Cat∆ → Cat,

we then obtain adjoint relations

π a c a u.

2 Simplicial Nerve
In this section we define the so-called simplicial nerve (also named homotopy-
coherent nerve), denoted by N : Cat∆ → sSet.

Beforehand, recall a lemma as follows.

Lemma 1. Suppose that C and D are locally small categories, and that D
admitting all small limits. Let F : C → D be a functor.

Define F ∗ : D → SetC
op

, which assigns each object d ∈ D the presheaf
HomD(F (−), d).

Denote by よ : C → SetC
op

the Yoneda embedding.
Denote by F! : SetC

op
→ D the left Kan extension of F along よ.

Then, we have adjoint pairs F! a F ∗. In particular, F! preserves colimits.
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We give some examples.
Example 1. Let C = ∆, D = Cat, and F : ∆ ↪→ Cat the fully faithful functor
that embeds ∆ as a full subcategory of Cat.

Then F ∗ = N the ordinary nerve functor, F! = h the homotopy functor.
Example 2. Again let C = ∆, D = Top, and F : ∆ → Top sending each object
[n] ∈ ∆ to the geometric n-simplex |∆n|.

Then F ∗ = Sing the singular complex functor, F! = | · | the geometrical
realisation.

Now, we would like to define the so-called simplicial nerve functor N : Cat∆ →
sSet. To do so, we first construct a functor ∆ → Cat∆, which serves as F in
Lemma 1, and then we define N to be F ∗. Besides, the biproduct F! is denoted
C : sSet → Cat∆, which is called the Joyal rigidification functor.

2.1 Construction of the functor ∆ → Cat∆
Denote by Lin.or.Set the category of finite linearly ordered sets and order-
preserving morphisms.

We are about to define a functor (by some abuse of notation) C : Lin.or.Set →
Cat∆, then restrict it to the subcategory ∆ of Lin.or.Set, so as to obtain the
desired functor F = C : ∆ → Cat∆.

To do so, we first do some preparatory work.
For any object J ∈ Lin.or.Set, and any element i, j in J such that i ⩽ j,

define
Pi,j := {I ⊂ [i, j] ⊂ J | i, j ∈ I}.

We order Pi,j by using the inclusion relation ⊂, then Pi,j can be viewed canon-
ically as a category.

Sometimes we also use the notation P J
i,j for Pi,j if we desire to emphasize

the whole set J .
Now, for each J ∈ Lin.or.Set, we assign a simplicially enriched category

C[∆J ], whose object-set is exactly J , and whose hom-sets are given by

HomC[∆J ](i, j) :=

{
N (Pi,j) , if i ⩽ j;

∅, otherwise,

where i, j ∈ J .
Note that for i ⩽ j ⩽ k, we have a map Pj,k×Pi,j → Pi,k which sends (I ′, I)

to I ∪ I ′. By taking the nerve functor, we obtain a map

HomC[∆J ](j, k)× HomC[∆J ](i, j) → HomC[∆J ](i, k),

which we define as the composition map in C[∆J ].
One can check that in this way we indeed defined a simplicially enriched

category C[∆J ].
We are now in position to define the functor CLin.or.Set → Cat∆.
Indeed, at the level of objects, we assign to each J ∈ Lin.or.Set the simpli-

cially enriched category C[∆J ].
At the level of morphism, to each order-preserving map f : J → J ′, we define

a map P J
i,j → P J ′

f(i),f(j), given by P J
i,j 3 I 7→ f(I) ∈ P J ′

f(i),f(j). Therefore, after
taking the nerve functor, we obtain a morphism between simplicial sets

f∗ : HomC[∆J ](i, j) → HomC[∆J′ ](f(i), f(j)).
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We now define C(f) to be f∗.
It can be checked that C defined in this way is indeed a functor.

2.2 N and C

Letting F be the restriction of C to ∆, and using Lemma 1, we obtain adjoint
functors N = F ∗ : Cat∆ → sSet and C = F! : sSet → Cat∆. We also note that
C : sSet → Cat∆ preserves all colimits.

2.3 Explore C[∆n] (and Dwyer–Kan–Bergner model struc-
ture)

In this subsection we explore the simplicially enriched category C[∆n].
Note that for any J ∈ Lin.or.Set, one can always find an isomorphism J ∼= [n].

Thus C[∆J ] ∼= C[∆n].
First of all, the objects of C[∆n] are exactly elements of [n] = {0 < 1 < · · · <

n}.
Next, for any i ⩽ j, we need to study the category (or ordered set) Pi,j . If

i = j, clearly Pi,j consists of a single element.
Now suppose i < j. Consider a bijection Pi,j → [1]j−i−1 such that

Pi,j 3 I 7→ (χi+1∈I , · · · , χj−1∈I) ,

where for i < k < j,

χk∈I :=

{
0, if k /∈ I;

1, if k ∈ I.

Thus, we see that, for i < j, N(Pi,j) ∼= (∆1)j−i−1; and N(Pi,i) ∼= ∆0.
As a corollary, it can be checked easily that

Corollary 1. There exists a canonical isomorphism π(C[∆n]) ∼= [n] which is
identity on objects.

Here, let us add some remarks.
Indeed, the category Cat∆ can be given a standard model category structure,

which is called the Dwyer–Kan–Bergner structure.
To be explicit, we can define the weak equivalence on Cat∆ as simplicially

enriched functors F : C → D between arbitrary simplicially enriched categories
C and D such that

• on the level of morphisms, the map F : HomC(x, y) → HomD(F (x), F (y))
is a weak equivalence with respect to the standard model category struc-
ture on sSet, that is, it is a weak equivalence after applying geometrical
realisation;

• the induced map π(C) → π(D) is essentially surjective.

The weak equivalence defined above is also known as Dwyer–Kan equiva-
lence.

By the way, we define the notion of fibration on Cat∆, which is actually of
no significance in our situtaion.

The fibrations on Cat∆ is given by F : C → D such that
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• on the level of morphisms, the map F : HomC(x, y) → HomD(F (x), F (y))
is fibration with respect to the standard model category structure on sSet,
that is, it is a Kan fibration;

• the induced map π(C) → π(D) is an isofibration.

Remark 1. We see immediately that the fibrant objects for the Dwyer–Kan–
Bergner model are exactly those Kan-enriched categories.
Remark 2. Denote by H the homotopy category of sSet (or equivalently, that of
Kan). We observe that H is a monoidal category. Also, note that π : Cat∆ → Cat
lifts to π : Cat∆ → CatH (the latter the category of H-enriched categories).
Then, we see that the definition of Dwyer–Kan equivalence is the same as H-
enriched equivalence.
Remark 3. One can show that, the homotopy functor h : sSet → Cat (i.e. the
left adjoint of the nerve functor N : Cat → sSet) coincides with the compostion
π◦C. Thus, according to the previous remark, h can be lifted to h : sSet → CatH.

As a sequel to Corollary 1, we can show immediately that

Corollary 2. The map C[∆n] → c([n]) adjoint to the isomorphism π(C[∆n]) →
[n] given in Corollary 1 is a weak equivalence that is identity on objects.

We also point out the following theorem:

Theorem 1. Suppose sSet is endowed with the Joyal model structure, then the
adjoint pair C a N gives a Quillen equivalence between sSet and Cat∆.

Remark 4. The theorem above indeed alludes to the fact that CatsSet served
as another model for ∞-categories other than sSet (or quasi-categories). As a
reminder, there are indeed a number of classical ∞-categories constructed in this
way: for example, the ∞-category of spaces S, the ∞-category of ∞-catgeories
Cat∞, derived ∞-category DA for abelian category A, etc; of which we shall
introduce the former two later.

However, one must have noted that this model is not that good, and people
generally like to work with quasi-categories. For the reason, one could check
this thread on overflow.

2.4 Explore N(C)
In this subsection we briefly study the simplicial set N(C), where C is an arbitrary
simplicially enriched category.

Note that C[∆0] = c([0]), and that C[∆1] = c([1]). We see that

N(C)0 := HomCat∆(C[∆
0], C)

= HomCat∆(c([0]), C)
∼= HomsSet([0], uC),

and similarly
N(C)1 ∼= HomsSet([1], uC).

Therefore, the objects of N(C) are given by objects of C, and the morphisms
of N(C) are given by the 1-morphisms of C, that is, the objects of the hom-sets
of C.
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We could also explore N(C)2. We omit the procedure (which is, however,
worth of carrying out), and give the conclusion: the 2-simplices of N(C) are
given by natural transformations g ◦ f ⇒ h, where we have morphisms x

f→ y,
y

g→ z, and x
h→ z, and its edges are g, f and g ◦ f respectively.

3 S and Cat∞
As a corollary to Theorem 1, we see that for any Kan-enriched category C, N(C)
is an ∞-category. We also note that this is a proposition that can be proved
directly. Besides, for any C ∈ Cat∆, using Corollary 2, we can show that N(C)
must be a composer. That is, any map Spn → N(C) from the n-spine Spn to
N(C) can be lifted to a map ∆n → N(C).

Now, consider the category Kan of (small) Kan complexes. This category
is Kan-enriched, whose Hom-set from C to D is given by the Kan complex
Fun(C,D), where C,D are Kan complexes. We then define the ∞-catgeory of
spaces S := N(Kan).
Remark 5. The ∞-category S is really important: it serves as the role ”base
space” in the setting of ∞-categories, as the category Set in ordinary category
theory. For example, one can define the ∞-presheaf over an ∞-catgeory C as
the ∞-category Fun(Cop, S).
Remark 6. As is well-known, to each model category, one may, through localisa-
tion, associate a corresponding ∞-category. If one carries this procedure to sSet
with the standard model structure, then one obtain the ∞-category S. Indeed,
one has a more general theorem due to Dwyer–Kan:

Theorem 2 (Dwyer–Kan). Let C be a simplicial model category. Then the full
subcategory of cofibrant-fibrant objects Catcf is a Kan-enriched category. Fur-
thermore, one has an equivalence between ∞-categories:

LC ' N(Ccf),

where LC denotes the localisation of C.

We then consider another example. Denote by QCat the Kan-enriched cat-
egory of (small) ∞-categories. Its objects are (small) ∞-categories, and its
Hom-set from ∞-category C to D is given by the maximal sub-∞-groupoid of
Fun(C,D). We then define the ∞-category of ∞-categories Cat∞ := N(QCat).
Remark 7. Warning! One may think one can apply Theorem 2 to sSet with
Joyal model struture. This is, however, not legistimate, as in this case sSet is
not a simplical model category. However, if one consider the simplicial model
category sSet+ of marked simplicial sets, then Theorem 2 can apply and it turns
out that the result is Cat∞. Still, it is alluring to ask whether sSet with Joyal
model struture localises to give Cat∞.
Remark 8. One may ask why we take ”maximal sub-∞-groupoid” here. As far
as the author knows, this is a matter of covenience. If we do not do so, we
will then obtain the so-called (∞, 2)-category of (∞, 1)-categories. See the third
section of [1].
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